Genetic mutation of recombination activating gene 1 in Dahl salt-sensitive rats attenuates hypertension and renal damage.
نویسندگان
چکیده
Hypertension and renal damage in Dahl SS rats are associated with increased infiltrating immune cells in the kidney. To examine the role of infiltrating immune cells in this disease process, a zinc finger nuclease targeting bases 672-706 of recombination-activating gene 1 (Rag1) was injected into the pronucleus of Dahl SS (SS/JrHsdMcwi) strain embryos and implanted in pseudopregnant females. This strategy yielded a rat strain with a 13-base frame-shift mutation in the target region of Rag1 and a deletion of immunoreactive Rag1 protein in the thymus. Flow cytometry demonstrated that the Rag1-null mutant rats have a significant reduction in T and B lymphocytes in the circulation and spleen. Studies were performed on SS and Rag1-null rats fed a 4.0% NaCl diet for 3 wk. The infiltration of T cells into the kidney following high-salt intake was significantly blunted in the Rag1-null rats (1.7 ± 0.6 × 10(5) cells/kidney) compared with the Dahl SS (5.6 ± 0.9 × 10(5) cells/kidney). Accompanying the reduction in infiltration of immune cells in the kidney, mean arterial blood pressure and urinary albumin excretion rate were significantly lower in Rag1-null mutants (158 ± 3 mmHg and 60 ± 16 mg/day, respectively) than in SS rats (180 ± 11 mmHg and 251 ± 37 mg/day). Finally, a histological analysis revealed that the glomerular and tubular damage in the kidneys of the SS rats fed a high-salt diet was also attenuated in the Rag1 mutants. These studies demonstrate the importance of renal infiltration of immune cells in the pathogenesis of hypertension and renal damage in Dahl SS rats.
منابع مشابه
CALL FOR PAPERS Integrative and Translational Physiology: Inflammation and Immunity in Organ System Physiology Genetic mutation of recombination activating gene 1 in Dahl salt-sensitive rats attenuates hypertension and renal damage
Mattson DL, Lund H, Guo C, Rudemiller N, Geurts AM, Jacob H. Genetic mutation of recombination activating gene 1 in Dahl salt-sensitive rats attenuates hypertension and renal damage. Am J Physiol Regul Integr Comp Physiol 304: R407–R414, 2013. First published January 30, 2013; doi:10.1152/ajpregu.00304.2012.—Hypertension and renal damage in Dahl SS rats are associated with increased infiltratin...
متن کاملRenal medullary 11 beta-hydroxysteroid dehydrogenase type 1 in Dahl salt-sensitive hypertension.
The Dahl salt-sensitive rat is a widely used model of human salt-sensitive forms of hypertension. The kidney plays an important role in the pathogenesis of Dahl salt-sensitive hypertension, but the molecular mechanisms involved remain a subject of intensive investigation. Gene expression profiling studies suggested that 11 beta-hydroxysteroid dehydrogenase type 1 might be dysregulated in the re...
متن کاملSilencing of HIF prolyl-hydroxylase 2 gene in the renal medulla attenuates salt-sensitive hypertension in Dahl S rats.
BACKGROUND In response to high salt intake, transcription factor hypoxia-inducible factor (HIF) 1α activates many antihypertensive genes, such as heme oxygenase 1 (HO-1) 1 and cyclooxygenase 2 (COX-2) in the renal medulla, which is an important molecular adaptation to promote extra sodium excretion. We recently showed that high salt inhibited the expression of HIF prolyl-hydroxylase 2 (PHD2), a...
متن کاملInterferon gamma attenuates hypertensive renal injury in salt-sensitive Dahl rats.
Evidence has been provided that the immunological mechanism is involved in the genesis or maintenance of hypertension. In the present study, we investigated the effects of interferon gamma, a potent immunomodulator derived from lymphocytes, on hypertension and organ damage in Dahl salt-sensitive rats and in spontaneously hypertensive rats. Subcutaneous injection of interferon gamma (5 x 10(4) u...
متن کاملCaffeine intake antagonizes salt sensitive hypertension through improvement of renal sodium handling
High salt intake is a major risk factor for hypertension. Although acute caffeine intake produces moderate diuresis and natriuresis, caffeine increases the blood pressure (BP) through activating sympathetic activity. However, the long-term effects of caffeine on urinary sodium excretion and blood pressure are rarely investigated. Here, we investigated whether chronic caffeine administration ant...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 304 6 شماره
صفحات -
تاریخ انتشار 2013